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Abstract

A large-eddy simulation (LES) with the dynamic Smagorinsky–Germano subgrid-scale (SGS) model is used to study passive and reac-
tive scalar dispersion in a turbulent boundary layer. Instead of resolving the scalar transport equation, fluid particles containing scalar
are tracked in a Lagrangian way. The Lagrangian velocity of each fluid particle is considered to have a large-scale part (directly com-
puted by the LES) and a small-scale part. The movement of fluid elements containing scalar at a subgrid level is given by a three-dimen-
sional Langevin model. The stochastic model is written in terms of SGS statistics at a mesh level. Diffusion is taken into account by a
particle pairing exchange model. A second order, irreversible chemical reaction is considered to take place within each fluid particle. The
mixing fraction, that behaves as a passive scalar is compared to the experimental results of [Fackrell, J.E., Robins, A.G., 1982. Concen-
tration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 1–26] and to the LES of
[Sykes, R.I., Henn, D.S., 1992. Large-eddy simulation of the concentration fluctuations in a dispersing plume. Atmos. Environ. 26A,
3127–3144]. A model for the intensity of segregation is presented and the results of the computations are in good agreement with the
model. Finally, the spatial evolution of the intensity of segregation is compared to the dynamic and reactive scalar LES of [Meeder,
J.P., Nieuwstadt, F.T.M., 2000. Large-eddy simulation of the turbulent dispersion of a reactive plume from a point source into a neutral
atmospheric boundary layer. Atmos. Environ. 34, 3563–3573].
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Owing to an increasing interest in environmental prob-
lems, considerable attention has been focused on the pre-
diction of concentration levels downwind of polluting
sources in turbulent boundary layers. Since the pioneering
work of Deardorff (1970), LES has become a well estab-
lished tool for the study of turbulent flows (Meneveau
and Katz, 2000), the transport of passive scalars (Sykes
and Henn, 1992; Kemp and Thomson, 1996) as well as
the dispersion of reactive plumes (Sykes et al., 1992; Mee-
der and Nieuwstadt, 2000). Current LES of scalar fields are
increasingly applied to the study of atmospheric dispersion
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of pollutants, to the evaluation of mixing and segregation
rates (Meeder and Nieuwstadt, 2000) or concentration
peaks (Xie et al., 2004). However, these Eulerian
approaches are less employed when it comes to computing
the concentration variance or the SGS characteristics of the
scalar field. In this study, a Lagrangian stochastic model is
coupled with a LES with the dynamic Smagorinsky–Ger-
mano SGS model (Germano et al., 1991), in order to
obtain concentration field fluctuations, scalar fluxes and
the intensity of segregation of the reactive species.

In order to model the velocity field that advects the fluid
elements at a subgrid level, the three-dimensional Langevin
equation model (Thomson, 1987), is written in terms of the
local SGS characteristics. By this way, the Lagrangian sto-
chastic model is entirely given by the quantities directly com-
puted by the LES with the dynamic Smagorinsky–Germano
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SGS model, Germano et al. (1991). Scalar diffusion is taken
into account by a particle pairing exchange model, Simoëns
et al. (1997) and a second order, irreversible chemical reac-
tion is considered to take place within each fluid particle.

The results of the computations are compared with the
wind-tunnel dispersion results of Fackrell and Robins
(1982) and with the LES of Sykes and Henn (1992), who
used a Lagrangian puff scheme for the scalar transport
equation together with a non dynamic SGS model. The
intensity of segregation is then computed and a model for
this quantity is presented (Simoëns, 2002). Finally, the spa-
tial evolution of the intensity of segregation is compared to
the dynamic and reactive scalar LES of Meeder and Nie-
uwstadt (2000).

2. Large-eddy simulation

A turbulent boundary layer flow is computed using the
LES code ARPS 4.5.2. (Xue et al., 2000, 2001). Details
of the resolved equations and subgrid closure are given in
Aguirre (2005) and in Vinkovic et al. (in press). The conti-
nuity and momentum equations obtained by grid filtering
the Navier–Stokes equations are:
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where ui is the fluid velocity, p is the total pressure, m the
molecular kinematic viscosity, q the density and i = 1,2,3
refers to the x (streamwise), y (spanwise), and z (normal)
directions respectively. Bi includes the gravity and the Cori-
olis force. The tilde denotes application of the grid filtering
operation. The dynamic Smagorinsky–Germano subgrid-
scale model (Germano et al., 1991) is used.

The dimensions of the computational domain in the
streamwise, spanwise and wall-normal directions are,
respectively, lx = 6H, ly = 3H and lz = 2H, H being the
boundary layer depth. The Reynolds number based on
the friction velocity and the boundary layer depth is
Re = 15,040. The grid is uniform in the xy-planes and
stretched in the z-direction by a hyperbolic tangent func-
tion. The grid spacings are Dx = 0.083H, Dy = 0.083H
and 0.0025H < Dz < 0.083H.

The motion of fluid particles is obtained from

dxi

dt
¼ vi ð2Þ

xi is the position and vi is the Lagrangian velocity of the
fluid particle, given by

viðtÞ ¼ ~uið~xðtÞÞ þ v0iðtÞ ð3Þ
This velocity is considered to have an Eulerian large-scale
part ~uið~xðtÞÞ (which is known) and a fluctuating SGS con-
tribution v0iðtÞ, which is obtained by the stochastic model
described in the following section. The Lagrangian large-
scale velocities are obtained by a tri-linear quadratic
Lagrange interpolation method with 27 nodes. A second-
order Runge–Kutta method is used for the time-integration
of Eq. (2). At the boundaries, in the x-direction, particles
that leave the domain are re-introduced at the source. In
the y-direction the periodic boundary conditions are used.
Particles that reach the ground rebound respecting sym-
metric conditions.

3. Subgrid Lagrangian stochastic model

A full description of the coupling between the LES and
the subgrid stochastic model may be found in Vinkovic
et al. (2005). Only the main features will be presented in
this section. The movement of fluid elements containing
scalar at a subgrid level is given by a three-dimensional
Langevin model:

dvi ¼ ðcið~x;~v; tÞ þ aijð~x; tÞðvj � ~ujÞÞdt þ bijð~x; tÞdgjðtÞ
dxi ¼ vi dt

�
ð4Þ

where dgj is the increment of a vector-valued Wiener
process with zero mean, hdgji = 0, and variance dt,
hdgi dgji = dtdij. The fluid particle velocity is given by a
deterministic part ci þ aijv0j and by a completely random
part bij dgj. Within the deterministic term, ci stands for
the large-scale velocity contribution, while aijv0j stands for
the fluctuating SGS velocity of the fluid particle.

The coefficients aij, bij and ci are determined by relating
the subgrid statistical moments of~v0ðtÞ to the filtered Eule-
rian moments of the fluid velocity ~uð~x; tÞ, in analogy with
van Dop et al. (1986) who developed this approach in the
case of a classic Reynolds averaged decomposition. Assum-
ing that the subgrid turbulence is homogeneous and isotro-
pic, the fluid velocity given by the modified Langevin
model writes as
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where ~k is the subgrid turbulent kinetic energy, ~e is the sub-
grid turbulent dissipation rate and C0 is the Lagrangian
constant.

The large-scale velocity of the fluid particle is directly
computed by the LES with the dynamic Smagorinsky–Ger-
mano SGS model. In order to determine the SGS contribu-
tion (aij and bik) we need to resolve an additional transport
equation for ~k. This equation is deduced from Deardorff
(1980)
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where ~e ¼ Ce
~k3=2=~D. The terms on the right-hand side of

Eq. (6) correspond to the production by buoyancy, the pro-
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duction by shear, the diffusion of ~k and the dissipation.
Since we are interested in neutral flows the potential tem-
perature variation is neglected. The turbulent eddy viscos-
ity Km is computed by a dynamic procedure as described in
the previous section.

4. The diffusion model

In order to take diffusion into account a deterministic,
continuous in time pairing particle exchange model is used.
A full description of this model can be found in Simoëns
et al. (1997). We will resume here only the main aspects.

The domain is divided in boxes that are small compared
to the length scale of the flow (Pope, 1985). In each box, at
each time step, particles are randomly selected by pairs.
For each pair (m,n), the particle concentrations Cm(t)
and Cn(t) will evolve according to

dCmðtÞ
dt ¼ wðCnðtÞ � CmðtÞÞ

dCnðtÞ
dt ¼ wðCmðtÞ � CnðtÞÞ

(
ð7Þ

w is a relaxation coefficient. From a theoretical analysis w is
chosen so that the PDF pc of the concentration tends to a
Gaussian function in isotropic turbulence. As suggested by
Spalding (1971), w can be expressed as w = n/Tdiff, where n
is a random number between �1 and 1, and the diffusion
time Tdiff can be written as Tdiff = T/Cdiff, with Cdiff a con-
stant and T the time scale of the velocity fluctuations de-
fined as T = k/e. Pope (1985) explained that Cdiff has to
be adjusted with the relaxation of the standard deviation
of the concentration level rc. Even though Pope (1985) sug-
gested a value of 2, Michelot (1996) proposed a value of
2.25 as more appropriate.

5. The chemical reaction

The chemical reaction considered is a second order, irre-
versible reaction without influence on the turbulent field.
Let A and B be two reactive species that undergo the fol-
lowing reaction A + B! C at a rate kr. kr is assumed
constant.

The chemical reaction will take place within each fluid
particle. Thus, each particle in a mixing box will carry three
scalars A, B and C. If we consider the mth tracked fluid
particle, the respective concentrations of the three scalars
carried by the particle will be Cm

A ;C
m
B and Cm

C . The time evo-
lutions of the concentrations due to chemical reaction are
given by the following system:
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The generalization to a nth order reversible or non revers-
ible reaction is straightforward. This way, the entire simu-
lation associates turbulent dispersion (LES and subgrid
stochastic model), mixing and diffusion (Eq. (7)) and a
chemical reaction (Eq. (8)).

6. Model predictions and discussion

6.1. Description of the simulated experiment

A full description of the experimental facility and results
can be found in Fackrell and Robins (1982). Here, the main
characteristics of the experiment necessary for understand-
ing the simulations are given.

A turbulent boundary layer over a rough wall is gener-
ated in an open-circuit wind tunnel. A plume from a point
source at zs/H = 0.19 is studied. The source has a 8.5 mm
diameter and it emits at the average velocity of the flow
over its height. The source gas consists only of a neutrally
buoyant mixture of propane and helium. The former is
used as a trace gas for concentration measurements. Fack-
rell and Robins (1982) measured the mean concentration,
the concentration fluctuations and the fluxes in the passive
scalar plume.

In our simulations, a chemical reaction is introduced. It
is a second order irreversible reaction as described in the
previous section. In the absence of ultra violet radiation,
nitrogen monoxide and ozone undergo the following
reaction:

NO + O3!NO2 + O2 + 200 kJ/mole ð9Þ

The reaction rate kr is constant at 293 K, kr =
0.37 ppm�1 s�1. In order to compare the results of the sim-
ulation with the reference experiment, the mixing fraction F

is computed. The mixing fraction is defined by

F ¼
CNO � CO3

þ C0
O3

C0
NO þ C0

O3

ð10Þ

CNO and CO3
represent the concentrations of nitrogen

monoxide and ozone respectively. The superscript (0) indi-
cates initial values. The mixing fraction F behaves as a pas-
sive scalar if the diffusivities of the individual scalars are the
same. By computing the behavior of F we can obtain the
characteristics of the passive scalar plume as measured by
Fackrell and Robins (1982).

In the computation particles containing nitrogen mon-
oxide are continuously ejected from the source. Ten parti-
cles are ejected at each time step until the number of
particles in the domain becomes constant. Around the
plume of nitrogen monoxide there are ozone particles.
Therefore, at the same instant fluid particles containing
ozone are introduced in the domain. Since for the chemical
reaction it has to be always enough ozone, for each particle
of nitrogen monoxide, 10 particles of ozone are added.
Ozone particles are rejected around the plume source and
in every mixing box where ozone particles lack, new are
injected.

The LES (Eq. (1)) coupled with the subgrid stochastic
model (Eq. (5)) and the diffusion model (Eq. (7)) has
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already been applied to the study of passive scalar disper-
sion, Vinkovic et al. (in press). Details of the boundary
layer flow such as mean velocity, turbulent kinetic energy
and fluctuation profiles can be found in Vinkovic et al.
(in press). Here we will only describe the results relative
to reactive scalar dispersion.
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Fig. 1. Mean concentration C and mixing fraction F at x = 0.96H,
x = 1.92H and x = 2.88H. Full line – F our simulations; dashed – C our
simulations; dashed-dotted – C LES of Sykes and Henn (1992); squares –
C Fackrell and Robins (1982).
6.2. Mixing fraction profiles

The vertical profiles of the mean mixing fraction F at
x = 0.96H, x = 1.92H and x = 2.88H from the source
are shown on Fig. 1. The computed mean mixing fraction
profiles are in good agreement with the experimental
results of Fackrell and Robins (1982) and with the vertical
profiles of the mean concentration obtained in the passive
scalar case. The results are also compared with the LES of
Sykes and Henn (1992). Sykes and Henn simulated the
experiment of Fackrell and Robins (1982) with a Lagrang-
ian puff scheme for the scalar transport equation. As we
move away from the source, the simulations of Sykes
and Henn (1992) underestimate the mean concentration
near the wall.

The vertical profiles of the standard deviation of the
mixing fraction, F 02, normalized by its maximum value
are illustrated in Fig. 2, showing close agreement with the
experimental data. The difference between the passive and
the reactive scalar case is more important here and the pro-
files of F 02 are closer to the experimental results. Since fluid
particles containing ozone are injected continuously into
the computational domain (as explained above), in the case
of the reactive scalar computations, there are two times
more particles than in the passive scalar case. This is the
reason why the standard deviation profiles for the mixing
fraction are in better agreement with the experimental
results.

Fig. 3 shows the vertical velocity mixing fraction corre-
lation profiles, w0F 0, at x = 0.96H, x = 1.92H and
x = 2.88H. In the figure Cmax and Fmax are the local max-
imum concentration and mixing fraction for each profile,
respectively. The evolution of the profile shapes is in good
agreement with the experimental data. The flux profiles
develop from being antisymmetric about the source height
near the source, toward a ground-level source profile. Dif-
ferences appear between the passive and the reactive scalar
case. For the passive scalar, our simulations tend to over-
estimate the mass flux, particularly far from the wall. The
profiles obtained in the reactive scalar case tend to under-
estimate the vertical velocity mixing fraction correlation
both near the wall and far from the wall as we move away
from the source.
6.3. Mean concentration profiles of reactive species

The vertical profiles of the mean concentration of the
reactive species NO, O3 and NO2 + O2 at different dis-
tances from the source are shown in Fig. 4. The profiles
are normalized by the local maximum concentration for
each specie and each profile. The figures show clearly the
existence of two regimes. Near the source (up to x � 2H),
the peak of maximum concentration of the product of
the reaction (NO2 + O2) is at the same vertical position
as the peak of maximum concentration of the reacting spe-
cie injected at the source (NO).



Fig. 2. Mean-square concentration C0
2

and mean-square mixing fraction

F 0
2

at x = 0.96H, x = 1.92H and x = 2.88H. Full line – F 0
2

our
simulations; dashed – C0

2
our simulations; dashed-dotted – C0
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LES of

Sykes and Henn (1992); squares – C0
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Fackrell and Robins (1982).

Fig. 3. Mass flux w0C0 and velocity mixing fraction correlation w0F 0, at
x = 0.96H, x = 1.92H and x = 2.88H. Full line – w0F 0 our simulations;
dashed – w0C0 our simulations; squares – w0C0 Fackrell and Robins (1982).
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Away from the source (x P 2.88H), a first peak of max-
imum concentration of NO2 + O2 appears at the upper
boundary of the NO plume, and a second peak is present
slightly above the maximum concentration peak of NO.
6.4. Intensity of segregation

Fig. 5 illustrates the vertical profiles of the intensity of
segregation Is, given by



Fig. 5. Intensity of segregation Is at x = 0.96H, x = 1.92H and x = 2.88H.
Full line – our simulations; dashed-dotted – gradient model (Eq. (17)).

Fig. 4. Mean concentration of NO, O3 and NO2 + O2 at x = 0.96H,
x = 1.92H, x = 2.88H and x = 3.83H. Full line – NO; dashed-dotted – O3;
dashed – NO2 + O2.

632 C. Aguirre et al. / Int. J. Heat and Fluid Flow 27 (2006) 627–635
I s ¼
C0NOC0O3

CNOCO3

ð11Þ

at three different distances from the source. As expected,
since NO and O3 are not pre-mixed near the source, the
intensity of segregation is negative.

Because few experiments with reactive scalar giving the
intensity of segregation exist, it is interesting to have



Fig. 6. Diffusion coefficient Ds as function of x.
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another element of comparison than the LES of Meeder
and Nieuwstadt (2000). This is the reason why we used
the following model for the intensity of segregation. The
explanation and comparisons may be found in Simoëns
(2002). Let m be a fluid particle containing a specie A
which has an instantaneous concentration Cm(z0 + dz) at
location z0 + dz. We suppose that there is a mean gradient
of concentration at this location. Such an assumption is not
absurd when the mixing is not total. Following the hypoth-
esis and the Reynolds decomposition the particle m has a
fluctuation C0

mðz0 þ dzÞ equal to the difference between
mean concentration at z0 þ dz; Cðz0 þ dzÞ, and the mean
concentration Cðz0Þ:
C0

mðz0 þ dzÞ ¼ Cðz0 þ dzÞ > �Cðz0Þ ð12Þ
If dz� 1, we will have

Cðz0Þ � Cðz0 þ dzÞ � dz
oCðz0Þ

oz
ð13Þ

Thus

C0
mðz0 þ dzÞ � dz

oCðz0Þ
oz

ð14Þ

By applying the same procedure for two species we obtain

C0
m

A ðz0 þ dzÞC0mB ðz0 þ dzÞ � dz2 oCAðz0Þ
oz

oCBðz0Þ
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ð15Þ

Therefore, we can deduce that
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m
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ð16Þ

and thus

I s �
Ds

CACB

oCA

oz
oCB

oz
ð17Þ

where Ds is a diffusion coefficient that depends on z.
Directly computed values of Is are compared with the

values calculated from Eq. (17) in Fig. 5. The diffusion
coefficient Ds was chosen to obtain the best fit. A double
peak on the vertical profile through the plume centerline
of Is appears. The double peak exists both for the gradient
model as for Lagrangian stochastic modeling, even though
for this last case it is less evident. This double peak is also
present in the Eulerian subgrid-scale modeling by Meeder
and Nieuwstadt (2000). It is not clear why such peak
appear. Probably it is due to the inflexion points of the ver-
tical profile of CO3

, which are not located at the same
height as the inflexion points of CNO. This difference in
the position of the inflexion points also appears for the
results of Meeder and Nieuwstadt (2000). As we move
downstream of the source, for the results of Meeder and
Nieuwstadt (2000) as for our simulations, the profiles of
NO and O3 become more similar even when they are per-
turbated by the presence of the wall. Probably the influence
of the wall (producing asymmetry) is stronger on the
spreading of O3 than on the species ejected from the source.

The evolution of the Ds with distance from the source is
illustrated on Fig. 6. It is interesting because it shows two
different regimes of reactive scalar mixing. Close to the
source (x 6 1.92H), Ds decreases significantly. At x � 2H,
Ds attains a constant value, representing the change of mix-
ing regime. There are two phases (or regions) before Ds

attains a constant value. The first one, near the source is
for high concentration gradient levels for both original spe-
cies. The turbulence effect are not too high and the advec-
tion determines the spreading and thus the segregation.
The second region could be defined as an equilibrium
region where the stress tensor and the turbulent kinetic
energy balance the mean concentration gradient. Thus,
the behavior of Ds in this region has to combine both
effects. It would be interesting, in a future work, to com-
pare this proposed modeling of the segregation to a more
complex modeling as the one proposed by Meeder and Nie-
uwstadt (2000).

6.5. Comparison with the simulations of Meeder and

Nieuwstadt (2000)

In this section, the intensity of segregation obtained by
our simulations and by the model (Eq. (17)) is compared
to the value computed by Meeder and Nieuwstadt (2000).
Meeder and Nieuwstadt (2000) studied the dispersion of
NO from a point source in a neutral atmospheric boundary
layer of O3. They used a LES with a 1.5 turbulent kinetic
energy subgrid-scale model and a completely Eulerian
approach for the transport equation of the intensity of seg-
regation. The wind tunnel observations of Builtjes (1983)
were used as a test case by the authors.

Table 1 shows the characteristics of our simulations
(OS), compared to the LES of Meeder and Nieuwstadt
(2000) (M&N2000) and the experiments of Builtjes (1983)
(B83). The Damköhler number was computed by

DaNO ¼ krC
0
O3

zs

U s

� �
DaO3

¼ krC
0
NO

As

U szs

� �
8><
>: ð18Þ



Table 1
Characteristics of the experiments of Builtjes (1983) (B83), the LES of
Meeder and Nieuwstadt (2000) (M&N2000) and our simulations (OS)

kr (ppm�1 s�1) C0
NOðppmÞ C0

O3
ðppmÞ DaNO DaO3

B83 0.40 3900.0 0.35 0.049 0.196
M&N2000 0.01 55.0 0.35 0.051 0.192
OS 0.37 515.0 1.00 0.027 0.015

As (mm2) Us (m/s) zs (m) z0 (m)

B83 7.06 0.40 0.140 9.95 · 10�5

M&N2000 301.06 · 106 7.70 112.000 9.97 · 10�2

OS 56.69 3.18 0.228 2.88 · 10�4
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where zs and As are the height and the area of the source,
respectively, Us is the velocity of the flow at the source po-
sition and z0 is the surface roughness. The Damköhler
numbers in the experimental case of Builtjes (1983) and
in the LES of Meeder and Nieuwstadt (2000) are close.
In our simulations both DaNO and DaO3

are lower, illustrat-
ing the fact that in our case the chemical reaction is slower.
Therefore, close to the source we expect to obtain a lower
intensity of segregation.

The spatial evolution of the intensity of segregation Is

obtained by our simulations and compared to the LES of
Meeder and Nieuwstadt (2000) is shown in Fig. 7. Near
the source, in our simulations, the chemical reaction is
moderated (Is � �1). As the distance increases, Is tends
towards 0 and at x � H it attains a constant value of
Is � �0.3, illustrating the fact, that in our case the chemical
reaction is slow. In the case simulated by Meeder and Nie-
uwstadt (2000) the chemical reaction is slow near the
source. The intensity of segregation is close to 0 near the
source and then decreases up to Is � �0.45 at x � H,
attaining Is � �0.3 progressively, further downstream.

The model presented above (Eq. (17)) is in good agree-
ment with the computed results up to x � H. As we move
away from the source, the differences remain small.
Fig. 7. Intensity of segregation Is of NO and O3. Full line – gradient
model (Eq. (17)); dashed – our simulations; dashed-dotted – LES of
Meeder and Nieuwstadt (2000).
7. Conclusion

A LES coupled with a Lagrangian stochastic model has
been applied to the study of reactive scalar dispersion
downwind of a localized source of NO. Fluid particles con-
taining scalar are tracked in a Lagrangian way. The
Lagrangian velocity of each fluid particle is considered to
have a large-scale part and a small-scale part at a subgrid
level. The subgrid movement of fluid elements containing
scalar is given by a three-dimensional Langevin model
using the filtered SGS statistics in inhomogeneous turbu-
lence. Diffusion is taken into account by a deterministic,
continuous in time pairing particle exchange model. A sec-
ond order, irreversible chemical reaction is considered to
take place within each fluid particle.

The mixing fraction, that behaves as a passive scalar is
compared to the experimental results of Fackrell and Rob-
ins (1982) and to the LES of Sykes and Henn (1992) who
used a Lagrangian puff scheme for the scalar transport
equation together with a non dynamic SGS model. Good
agreement with the experiments is achieved. The mean con-
centration profiles of the reactive species are computed
showing the existence of two different mixing regimes as
we move away from the source.

The intensity of segregation is obtained directly from the
computed results with no additional simulations or clo-
sures. A model for the intensity of segregation is presented
and the results of the computations are in good agree-
ment with the model. Finally, the spatial evolution of the
intensity of segregation is compared to the LES of Meeder
and Nieuwstadt (2000) who used a completely Eulerian
approach.

The LES coupled with the Lagrangian stochastic model
provides good description of the plumes from elevated
sources. Standard deviations of the concentration as well
as higher order moments or the intensity of segregation
are directly obtained from the computed results with no
additional closures. Multiple chemical reactions can be eas-
ily included without additional scalar equations. Phenom-
ena taking place at the source can be described with no
new grid refinement.
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